Part Number Hot Search : 
CR256 P3601MSH KMOC3042 T2907A K4N38A 84110310 STM32F1 H120B
Product Description
Full Text Search
 

To Download LM358DR Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  1/17 www.rohm.com 2011.06 - rev.b ? 2011 rohm co., ltd. all rights reserved. general-purpose operational amplifiers / comparators trophy series operational amplifiers LM358DR/pwr/dgkr,lm2904dr/pwr/dgkr/vqdr/vqpwr lm324dr/pwr/kdr,lm2902dr/ per/kdr/kpwr/kvqdr/kvqpwr description the universal standard family lm358 / 324 and lm2904 / 2902 monolithic ics integrate two ind ependent op-amp circuits and phase compensation capacitors on a single chip, feature high gain and low power consumption, and possess an operating voltage range between 3[v]and 32[v] (single power supply.) features 1) operating temperature range commercial grade lm358/324 family : 0[ ] to + 70[ ] extended industrial grade lm2904/2902 family : -40[ ] to +125[ ] 2) wide operating voltage range +3[v] to +32[v] (single supply) 1.5[v] to 16[v] (dual supply) 3) low supply current 4) common-mode input voltage range, including ground 5) differential input voltage range equal to maximum ratedsupply voltage 6) high large signal voltage gain 7) wide output voltage range pin assignment no.11094ebt02 trophy series lm358 famil y lm324 family quad lm2904 famil y lm2902 famil y LM358DR lm358pwr lm358dgkr lm324dr lm324pwr lm324kdr lm2904dr lm2904pwr lm2904dgkr lm2904vqdr lm2904vqpwr lm2902dr lm2902pwr lm2902kdr lm2902kpwr lm2902kvqdr lm2902kvqpwr dual lm324kdr lm324dr tssop8 tssop14 LM358DR lm358pwr lm2904pwr lm358dgkr lm2904dr lm2904vqdr lm2904vqpwr msop8/vssop8 lm2902kvqdr lm2904dgkr lm2902dr lm2902kdr soic8 soic14 lm2902pwr lm324pwr lm2902kpwr lm2902kvqpwr 1 2 3 4 5 6 7 14 13 12 11 10 9 8 1out 1in- 1in+ vcc 2in+ 2in- 2out 4out 4in- 4in+ gnd 3in+ 3in- 3out 1out 1 2 3 4 1in- 1in+ gnd vcc 2out 2in- 2in+ 8 7 6 5
technical note 2/17 LM358DR/pwr/dgkr,lm2904 dr/pwr/dgkr/vqdr/vqpwr lm324dr/pwr/kdr,lm2902dr/pe r/kdr/kpwr/kvqdr/kvqpwr www.rohm.com 2011.06 - rev.b ? 2011 rohm co., ltd. all rights reserved. absolute maximum ratings (ta=25[ ]) parameter symbol ratings unit lm358 family lm324 family lm2904 family lm2902 family lm2904v family lm2902v family supply voltage vcc-gnd +32 +26 +32 v operating temperature range t opr 0 to +70 -40 to +125 storage temperature range tstg -65 to +150 input common-mode voltage vicm -0.3 to +32 -0.3 to +26 -0.3 to +32 v maximum junction temperature tjmax 150 electric characteristics lm358,lm324 family (unless otherwise specified, vcc=+5[v]) parameter symbol temperature range limits unit conditions fig. no lm358 family lm324 family min. typ. max. min. typ. max. input offset voltage (*1) vio 25 3 7 3 7 mv vo=1.4[v] vic=vicr(min) vcc=5[v] to 30[v] 98 full range 9 9 input offset voltage drift vio 7 v/ input offset current (*1) iio 25 2 50 2 50 na vo=1.4[v] 98 full range 150 150 input offset current drift iio 10 pa/ input bias current (*1) iib 25 20 250 20 250 na vo=1.4[v] 98 full range 500 500 input common-modevoltage range vicr 25 0 vcc - 1.5 vcc - 1.5 v vcc=5[v] to 30[v] 98 full range 0 vcc - 2.0 vcc - 2.0 high level output voltage voh 25 vcc - 1.5 vcc - 1.5 v rl R 2[k ? ] 99 full range 27 28 27 28 vcc=30[v],rl R 10[k ? ] low level output voltage vol full range 5 20 5 20 mv rl Q 10[k ? ] 98 large signal voltage gain avd 25 25 100 25 100 v/mv vcc=15[v] vo=1[v] to 11[v] rl R 2[k ? ] 98 common-mode rejection ratio cmrr 25 65 80 65 80 db vcc=5[v] to 30[v], vic=vicr(min) 98 supply-voltage rejection ratio ksvr 25 65 100 65 100 db vcc=5[v] to 30[v] 98 cross-talk attenuation vo1/vo2 25 120 120 db f=1[khz] to 20[khz] 101 output current (*2) source 25 20 30 20 30 ma vcc=15[v],vo=0[v] vid=1[v] 99 full range 10 10 sink 25 10 20 10 20 ma vcc=15[v],vo=0[v] vid=-1[v] full range 2 2 25 12 30 12 30 a vo=200[mv],vid=-1[v] supply current (all amps) icc full range 0.7 1.2 0.7 1.2 ma vo=2.5[v],no load 99 full range 1 2 1.4 3 vcc=30[v],vo=0.5[v] no load slew rate at unity-gain sr 25 0.3 0.5 v/ s rl=1[m ? ],cl=30[pf] vi= 10[v] vcc=15[v],gnd=-15[v] (reference to fig100) 99 unity gain bandwidth b1 25 0.7 1.2 mhz rl=1[m ? ],cl=20[pf] vcc=15[v],gnd=-15[v] (reference to fig99) 99 equivalent input noise voltage vn 25 40 35 hz nv/ vcc=15[v],gnd=-15[v] rs=100[ ? ],vi=0[v] f=1[khz](reference to fig99) 99 (*1) absolute value (*2) under high temperature, consider the power di ssipation of ic when select ing the output current. when the output terminal is continuously shorted, the out put current reduces the temperature inside the ic by flushing.
technical note 3/17 LM358DR/pwr/dgkr,lm2904 dr/pwr/dgkr/vqdr/vqpwr lm324dr/pwr/kdr,lm2902dr/pe r/kdr/kpwr/kvqdr/kvqpwr www.rohm.com 2011.06 - rev.b ? 2011 rohm co., ltd. all rights reserved. lm2904,lm2902 family (unless othe rwise specified, vcc=+5[v]) parameter symbol temperature range limits unit conditions fig. no lm2904 family lm2902 family min. typ. max. min. typ. max. input offset voltage (*3) vio 25 3 7 3 7 mv vo=1.4[v],vic=vicr(min) vcc=5[v] to max(*5) 98 full range 10 10 input offset voltage drift vio 7 7 v/ input offset current (*3) lm2904 lm2902(*5) iio 25 2 50 2 50 na vo=1.4[v] 98 full range 300 300 lm2904v lm2902v(*5) 25 2 50 2 50 full range 150 150 input offset current drift iio 10 10 pa/ input bias current (*3) iib 25 20 250 20 250 na vo=1.4[v] 98 full range 500 500 input common-mode voltage range vicr 25 vcc-1.5 vcc-1.5 v vcc=5[v] to max(*5) 98 full range vcc-2.0 vcc-2.0 high level output voltage voh 25 vcc-1.5 vcc-1.5 v rl R 10[k ? ] 99 lm2904 lm2902(*5) full range 23 24 23 24 vcc=max(*5),rl R 10[k ? ] lm2904v lm2902v(*5) full range 27 28 27 vcc=max(*5),rl R 10[k ? ] low level output voltage vol full range 5 20 5 20 mv rl Q 10[k ? ] 99 large signal voltage gain avd 25 25 100 25 100 v/mv vcc=15[v],vo=1[v] to 11[v] rl R 2[k ? ] 98 common- mode rejection ratio lm2904 lm2902(*5) cmrr 25 50 80 50 80 db vcc=5[v] to max(*5) vic=vicr(min) 98 lm2904v lm2902v(*5) 25 65 80 60 80 db supply voltage rejection ratio lm2904 lm2904v m2902(*5) ksvr 25 65 100 50 100 db vcc=5[v] to max(*5) 98 lm2902v(*5) 60 100 cross-talk attenuation vo1/vo2 25 120 120 db f=1[khz] to 20[khz] 101 output current (*4) source 25 20 30 20 30 60 ma vcc=15[v],vo=0[v] vid=1[v] 99 full range 10 10 sink 25 10 20 10 20 ma vcc=15[v],vo=0[v] vid=-1[v] full range 2 2 lm2904 lm2902(*5) io 25 30 30 a vo=200[mv],vid=-1[v] lm2904v lm2902v(*5) 25 12 40 12 40 a supply current (all amps) icc full range 0.7 1.2 0.7 1.2 ma vo=2.5[v],no load 99 full range 1 2 1.4 3 vcc=max(*5),vo=0.5[v] no load slew rate at unity gain sr 25 0.3 0.5 v/ s rl=1[m ? ],cl=30[pf], vi= 10[v] vcc=15[v],gnd=-15[v] (reference to fig100) 99 unity-gain bandwidth b1 25 0.7 1.2 mhz rl=1[m ? ],cl=20[pf] vcc=15[v],gnd=-15[v] (reference to fig99) 99 equivalent input noise voltage vn 25 40 35 hz nv/ vcc=15[v],gnd=-15[v] rs=100[ ? ]vi=0[v] f=1[khz], ( reference to fig99) 99 (*3) absolute value (*4) under high temperature, consider the power dissi pation of the ic when selecting the output current. when the output terminal is continuously shorted the out put current is reduced to lower the temperature inside the ic. (*5) the maximum supply voltage is 26v for the lm2904dr, lm2904pw, lm2904pwr, and lm2904dqkr the maximum supply voltage is 32v for the lm2904vqdr and lm2904vqpwr
technical note 4/17 LM358DR/pwr/dgkr,lm2904 dr/pwr/dgkr/vqdr/vqpwr lm324dr/pwr/kdr,lm2902dr/pe r/kdr/kpwr/kvqdr/kvqpwr www.rohm.com 2011.06 - rev.b ? 2011 rohm co., ltd. all rights reserved. reference data lm358 family (*)the data above is ability value of sample, it is not guaranteed. 0 200 400 600 800 0 25 50 75 100 ambient temperature : ta [] power dissipation pd [mw] 25 25 supply current ? supply voltage 0 supply current ? ambient temperature 3v 32v 5v derating curve maximum output voltage ? supply voltage (rl=10[k ? ]) 0 maximum output voltage ? ambient temperature (vcc=5[v],rl=2[k ? ]) output source current ? output voltage (vcc=5[v]) 0 25 70 output source current ? ambient temperature (vout=0[v]) 15v 3v 5v output sink current ? output voltage (vcc=5[v]) 0 25 70 output sink current ? ambient temperature (vout=vcc) 3v 5v 15v low level sink current - supply voltage (vout=0.2[v]) 0 25 low level sink current - ambient temperature (vout=0.2[v]) 32v 5v 3v input offset voltage - supply voltage (vicm=0[v], vout=1.4[v]) 0 25 lm358 family 70 70 70 70 lm358 family lm358 famil y lm358 famil y lm358 family lm358 family lm358 family lm358 famil y lm358 famil y lm358 famil y fig. 1 fig. 2 fig. 3 fig. 4 fig. 5 fig. 6 fig. 7 fig. 8 fig. 9 fig. 10 fig. 11 fig. 12 lm358 family lm358 famil y lm358pwr lm358dgkr LM358DR 70 [ ]
technical note 5/17 LM358DR/pwr/dgkr,lm2904 dr/pwr/dgkr/vqdr/vqpwr lm324dr/pwr/kdr,lm2902dr/pe r/kdr/kpwr/kvqdr/kvqpwr www.rohm.com 2011.06 - rev.b ? 2011 rohm co., ltd. all rights reserved. reference data lm358 family (*)the data above is ability value of sample, it is not guaranteed. input bias current ? ambient temperature (vcc=30[v],vicm=28[v],vout=1.4[v]) input offset voltage ? common mode input voltage (vcc=5[v]) input bias current ? supply voltage (vicm=0[v], vout=1.4[v]) input offset voltage ? ambient temperature (vicm=0[v], vout=1.4[v]) 3v 32v 5v 0 25 input bias current ? ambient temperature (vicm=0[v],vout=1.4[v]) 3v 5v input offset current ? supply voltage (vicm=0[v],vout=1.4[v]) 0 25 input offset current ? ambient temperature (vicm=0[v],vout=1.4[v]) 3v 32v 5v 0 25 0 70 25 large signal voltage gain ? ambient temperature (rl=2[k ? ]) 15v 5v 0 25 common mode rejection ratio ? supply voltage common mode rejection ratio ? ambient temperature 5v 3v 32v power supply rejection ratio ? ambient temperature large signal voltage gain ? supply voltage (rl=2[k ? ]) 70 70 70 32v 70 lm358 family lm358 family lm358 famil y lm358 family lm358 famil y lm358 famil y lm358 famil y lm358 famil y lm358 family lm358 famil y lm358 family lm358 famil y fig. 13 fig. 14 fig. 15 fig. 16 fig. 17 fig. 18 fig. 19 fig. 20 fig. 21 fig. 22 fig. 23 fig. 24 36v [v]
technical note 6/17 LM358DR/pwr/dgkr,lm2904 dr/pwr/dgkr/vqdr/vqpwr lm324dr/pwr/kdr,lm2902dr/pe r/kdr/kpwr/kvqdr/kvqpwr www.rohm.com 2011.06 - rev.b ? 2011 rohm co., ltd. all rights reserved. reference data lm324 family (*)the data above is ability value of sample, it is not guaranteed. 0 200 400 600 800 1000 0 25 50 75 100 ambient temperature : ta [] power dissipation pd [mw] 25 25 supply current ? supply voltage 0 supply current ? ambient temperature 3v 32v 5v derating curve maximum output voltage ? supply voltage (rl=10[k ? ]) 0 maximum output voltage ? ambient temperature (vcc=5[v],rl=2[k ? ]) output source current ? output voltage (vcc=5[v]) 0 25 70 output source current ? ambient temperature (vout=0[v]) 15v 3v 5v output sink current ? output voltage (vcc=5[v]) 0 25 70 output sink current ? ambient temperature (vout=vcc) 3v 5v 15v low level sink current - supply voltage (vout=0.2[v]) 0 25 low level sink current - ambient temperature (vout=0.2[v]) 32v 5v 3v input offset voltage - supply voltage (vicm=0[v], vout=1.4[v]) 0 25 lm324 family 70 70 70 70 ba2904 family ba2904 family lm324 family lm324 famil y lm324 famil y lm324 family lm324 family lm324 family lm324 famil y lm324 famil y lm324 famil y fig. 25 fig. 26 fig. 27 fig. 28 fig. 29 fig. 30 fig. 31 fig. 32 fig. 33 fig. 34 fig. 35 fig. 36 lm324 family lm324 famil y lm324pwr lm324dr lm324kdr 70 [ ]
technical note 7/17 LM358DR/pwr/dgkr,lm2904 dr/pwr/dgkr/vqdr/vqpwr lm324dr/pwr/kdr,lm2902dr/pe r/kdr/kpwr/kvqdr/kvqpwr www.rohm.com 2011.06 - rev.b ? 2011 rohm co., ltd. all rights reserved. reference data lm324 family (*)the data above is ability value of sample, it is not guaranteed. input bias current ? ambient temperature (vcc=30[v],vicm=28[v],vout=1.4[v]) input offset voltage ? common mode input voltage (vcc=5[v]) input bias current ? supply voltage (vicm=0[v], vout=1.4[v]) input offset voltage ? ambient temperature (vicm=0[v], vout=1.4[v]) 3v 32v 5v 0 25 input bias current ? ambient temperature (vicm=0[v],vout=1.4[v]) 5v input offset current ? supply voltage (vicm=0[v],vout=1.4[v]) 0 25 input offset current ? ambient temperature (vicm=0[v],vout=1.4[v]) 3v 32v 5v 0 25 0 70 25 large signal voltage gain ? ambient temperature (rl=2[k ? ]) 15v 5v 0 25 common mode rejection ratio ? supply voltage common mode rejection ratio ? ambient temperature 5v 3v 32v power supply rejection ratio ? ambient temperature large signal voltage gain ? supply voltage (rl=2[k ? ]) 70 70 70 32v 70 lm324 family lm324 family lm324 famil y lm324 family lm324 famil y lm324 famil y lm324 famil y lm324 famil y lm324 family lm324 famil y lm324 family lm324 famil y fig. 37 fig. 38 fig. 39 fig. 40 fig. 41 fig. 42 fig. 43 fig. 44 fig. 45 fig. 46 fig. 47 fig. 48 [v] 36v 3v
technical note 8/17 LM358DR/pwr/dgkr,lm2904 dr/pwr/dgkr/vqdr/vqpwr lm324dr/pwr/kdr,lm2902dr/pe r/kdr/kpwr/kvqdr/kvqpwr www.rohm.com 2011.06 - rev.b ? 2011 rohm co., ltd. all rights reserved. reference data lm2904 family (*)the data above is ability value of sample, it is not guaranteed. 0.0 0.2 0.4 0.6 0.8 1.0 0 10203040 supply voltage [v] supply current [ma] 0.0 0.2 0.4 0.6 0.8 1.0 -50 -25 0 25 50 75 100 125 150 ambient temperature [ ] supply current [ma] 0 200 400 600 800 0 25 50 75 100 125 150 ambient temperature : ta [] power dissipation pd [mw] 0 10 20 30 40 010203040 supply voltage [v] maximum output voltage [v] 0 1 2 3 4 5 - 50 - 25 0 25 50 75 100 125 150 ambient temperature [ ] maximum output voltage [v] 0 10 20 30 40 50 012345 output voltage [v] output source current [ma] 0 10 20 30 40 50 60 70 80 0 5 10 15 20 25 30 35 supply voltage [v] low level si nk current [ a] 0 10 20 30 40 50 60 70 80 -50-25 0 255075100125150 ambient temperature [ ] low level sink current [ a] -8 -6 -4 -2 0 2 4 6 8 0 5 10 15 20 25 30 35 supply voltage [v] input offset voltage [mv] 0 10 20 30 40 50 -50 -25 0 25 50 75 100 125 150 ambient temperature [ ] output source current [ma] 0.001 0.01 0.1 1 10 100 0 0.4 0.8 1.2 1.6 2 output voltage [v] output sink current [ma] 0 10 20 30 -50 -25 0 25 50 75 100 125 150 ambient temperature [ ] output sink current [ma] 25 25 125 supply current ? supply voltage 40 supply current ? ambient temperature 3v 32v 5v derating curve maximum output voltage ? supply voltage (rl=10[k ? ]) -40 maximum output voltage ? ambient temperature (vcc=5[v],rl=2[k ? ]) output source current ? output voltage (vcc=5[v]) -40 25 105 output source current ? ambient temperature (vout=0[v]) 15v 3v 5v output sink current ? output voltage (vcc=5[v]) -40 25 105 output sink current ? ambient temperature (vout=vcc) 3v 5v 15v low level sink current - supply voltage (vout=0.2[v]) -40 125 25 low level sink current - ambient temperature (vout=0.2[v]) 32v 5v 3v input offset voltage - supply voltage (vicm=0[v], vout=1.4[v]) -40 25 125 lm2904 family 125 105 105 125 105 125 105 ba2904 family ba2904 family lm2904 family lm2904 famil y lm2904 famil y lm2904 family lm2904 family lm2904 family lm2904 famil y lm2904 famil y lm2904 famil y fig. 49 fig. 50 fig. 51 fig. 52 fig. 53 fig. 54 fig. 55 fig. 56 fig. 57 fig. 58 fig. 59 fig. 60 lm2904 famil y lm2904 famil y lm2904pwr lm2904vqpwr lm2904dgkr lm2904dr lm2904vqdr [ ]
technical note 9/17 LM358DR/pwr/dgkr,lm2904 dr/pwr/dgkr/vqdr/vqpwr lm324dr/pwr/kdr,lm2902dr/pe r/kdr/kpwr/kvqdr/kvqpwr www.rohm.com 2011.06 - rev.b ? 2011 rohm co., ltd. all rights reserved. reference data lm2904 family (*)the data above is ability value of sample, it is not guaranteed. -8 -6 -4 -2 0 2 4 6 8 -50 -25 0 25 50 75 100 125 150 ambient temperature [ ] input offset voltage [mv] 0 10 20 30 40 50 0 5 10 15 20 25 30 35 supply voltage [v] input bias current [na] 0 10 20 30 40 50 -50 -25 0 25 50 75 100 125 150 ambient temperature [ ] input bias current [na] -10 0 10 20 30 40 50 -50 -25 0 25 50 75 100 125 150 ambient temperature [ ] input bias current[na] -8 -6 -4 -2 0 2 4 6 8 -1012345 input voltage [vin] input offset voltage [mv] -10 -5 0 5 10 0 5 10 15 20 25 30 35 supply voltage [v] input offset current [na] 40 60 80 100 120 140 010203040 supply voltage [v] common mode rejection ratio [db] 40 60 80 100 120 140 -50 -25 0 25 50 75 100 125 150 ambient temperature [ ] common mode rejection ratio [db] 60 70 80 90 100 110 120 130 140 -50 -25 0 25 50 75 100 125 150 ambient temperature [ ] power supply rejection ratio [db] input bias current ? ambient temperature (vcc=30[v],vicm=28[v],vout=1.4[v]) -10 -5 0 5 10 -50 -25 0 25 50 75 100 125 150 ambient temperature [ ] input offset current [na] 60 70 80 90 100 110 120 130 140 4 6 8 10121416 supply voltage [v] large signal voltage gain [db] 60 70 80 90 100 110 120 130 140 -50 -25 0 25 50 75 100 125 150 ambient temperature [ ] large signal voltage gain [db] input offset voltage ? common mode input voltage (vcc=5[v]) input bias current ? supply voltage (vicm=0[v], vout=1.4[v]) input offset voltage ? ambient temperature (vicm=0[v], vout=1.4[v]) 3v 32v 5v 125 -40 25 input bias current ? ambient temperature (vicm=0[v],vout=1.4[v]) 3v 5v input offset current ? supply voltage (vicm=0[v],vout=1.4[v]) -40 25 125 input offset current ? ambient temperature (vicm=0[v],vout=1.4[v]) 3v 32v 5v -40 25 125 -40 105 25 large signal voltage gain ? ambient temperature (rl=2[k ? ]) 15v 5v -40 125 25 common mode rejection ratio ? supply voltage common mode rejection ratio ? ambient temperature 5v 3v 32v power supply rejection ratio ? ambient temperature large signal voltage gain ? supply voltage (rl=2[k ? ]) 105 125 105 105 32v 105 lm2904 family lm2904 family lm2904 famil y lm2904 family lm2904 famil y lm2904 famil y lm2904 famil y lm2904 famil y lm2904 family lm2904 famil y lm2904 family lm2904 famil y fig. 61 fig. 62 fig. 63 fig. 64 fig. 65 fig. 66 fig. 67 fig. 68 fig. 69 fig. 70 fig. 71 fig. 72 [v] 36v
technical note 10/17 LM358DR/pwr/dgkr,lm2904 dr/pwr/dgkr/vqdr/vqpwr lm324dr/pwr/kdr,lm2902dr/pe r/kdr/kpwr/kvqdr/kvqpwr www.rohm.com 2011.06 - rev.b ? 2011 rohm co., ltd. all rights reserved. reference data lm2902 family (*)the data above is ability value of sample, it is not guaranteed. 0.0 0.2 0.4 0.6 0.8 1.0 0 10203040 supply voltage [v] supply current [ma] 0.0 0.2 0.4 0.6 0.8 1.0 -50 -25 0 25 50 75 100 125 150 ambient temperature [ ] supply current [ma] 0 200 400 600 800 1000 0 25 50 75 100 125 150 ambient temperature : ta [] p ow er dissip ation p d [m w ] 0 10 20 30 40 010203040 supply voltage [v] maximum output voltage [v] 0 1 2 3 4 5 - 50 - 25 0 25 50 75 100 125 150 ambient temperature [ ] maximum output voltage [v] 0 10 20 30 40 50 012345 output voltage [v] output source current [ma] 0 10 20 30 40 50 60 70 80 0 5 10 15 20 25 30 35 supply voltage [v] low level si nk current [ a] 0 10 20 30 40 50 60 70 80 -50-25 0 255075100125150 ambient temperature [ ] low level sink current [ a] -8 -6 -4 -2 0 2 4 6 8 0 5 10 15 20 25 30 35 supply voltage [v] input offset voltage [mv] 0 10 20 30 40 50 -50 -25 0 25 50 75 100 125 150 ambient temperature [ ] output source current [ma] 0.001 0.01 0.1 1 10 100 0 0.4 0.8 1.2 1.6 2 output voltage [v] output sink current [ma] 0 10 20 30 -50 -25 0 25 50 75 100 125 150 ambient temperature [ ] output sink current [ma] 25 25 125 supply current ? supply voltage 40 supply current ? ambient temperature 3v 32v 5v derating curve maximum output voltage ? supply voltage (rl=10[k ? ]) -40 maximum output voltage ? ambient temperature (vcc=5[v],rl=2[k ? ]) output source current ? output voltage (vcc=5[v]) -40 25 105 output source current ? ambient temperature (vout=0[v]) 15v 3v 5v output sink current ? output voltage (vcc=5[v]) -40 25 105 output sink current ? ambient temperature (vout=vcc) 3v 5v 15v low level sink current - supply voltage (vout=0.2[v]) -40 125 25 low level sink current - ambient temperature (vout=0.2[v]) 32v 5v 3v input offset voltage - supply voltage (vicm=0[v], vout=1.4[v]) -40 25 125 lm2902 family 125 105 105 125 105 125 105 lm2902 family lm2902 famil y lm2902 famil y lm2902 family lm2902 family lm2902 family lm2902 famil y lm2902 famil y lm2902 famil y fig. 73 fig. 74 fig. 75 fig. 76 fig. 77 fig. 78 fig. 79 fig. 80 fig. 81 fig. 82 fig. 83 fig. 84 lm2902 famil y lm2902 famil y lm2902pwr lm2902kpwr lm2902kvqpwr lm2902dr lm2902kdr lm2902kvqdr [ ]
technical note 11/17 LM358DR/pwr/dgkr,lm2904 dr/pwr/dgkr/vqdr/vqpwr lm324dr/pwr/kdr,lm2902dr/pe r/kdr/kpwr/kvqdr/kvqpwr www.rohm.com 2011.06 - rev.b ? 2011 rohm co., ltd. all rights reserved. reference data lm2902 family (*)the data above is ability value of sample, it is not guaranteed. -8 -6 -4 -2 0 2 4 6 8 -50 -25 0 25 50 75 100 125 150 ambient temperature [ ] input offset voltage [mv] 0 10 20 30 40 50 0 5 10 15 20 25 30 35 supply voltage [v] input bias current [na] 0 10 20 30 40 50 -50 -25 0 25 50 75 100 125 150 ambient temperature [ ] input bias current [na] -10 0 10 20 30 40 50 -50 -25 0 25 50 75 100 125 150 ambient temperature [ ] input bias current[na] -8 -6 -4 -2 0 2 4 6 8 -1012345 input voltage [vin] input offset voltage [mv] -10 -5 0 5 10 0 5 10 15 20 25 30 35 supply voltage [v] input offset current [na] 40 60 80 100 120 140 010203040 supply voltage [v] common mode rejection ratio [db] 40 60 80 100 120 140 -50 -25 0 25 50 75 100 125 150 ambient temperature [ ] common mode rejection ratio [db] 60 70 80 90 100 110 120 130 140 -50 -25 0 25 50 75 100 125 150 ambient temperature [ ] power supply rejection ratio [db] input bias current ? ambient temperature (vcc=30[v],vicm=28[v],vout=1.4[v]) -10 -5 0 5 10 -50 -25 0 25 50 75 100 125 150 ambient temperature [ ] input offset current [na] 60 70 80 90 100 110 120 130 140 4 6 8 10121416 supply voltage [v] large signal voltage gain [db] 60 70 80 90 100 110 120 130 140 -50 -25 0 25 50 75 100 125 150 ambient temperature [ ] large signal voltage gain [db] input offset voltage ? common mode input voltage (vcc=5[v]) input bias current ? supply voltage (vicm=0[v], vout=1.4[v]) input offset voltage ? ambient temperature (vicm=0[v], vout=1.4[v]) 3v 32v 5v 125 -40 25 input bias current ? ambient temperature (vicm=0[v],vout=1.4[v]) 3v 5v input offset current ? supply voltage (vicm=0[v],vout=1.4[v]) -40 25 125 input offset current ? ambient temperature (vicm=0[v],vout=1.4[v]) 3v 32v 5v -40 25 125 -40 105 25 large signal voltage gain ? ambient temperature (rl=2[k ? ]) 15v 5v -40 125 25 common mode rejection ratio ? supply voltage common mode rejection ratio ? ambient temperature 5v 3v 32v power supply rejection ratio ? ambient temperature large signal voltage gain ? supply voltage (rl=2[k ? ]) 105 125 105 105 32v 105 lm2902 family lm2902 family lm2902 famil y lm2902 family lm2902 famil y lm2902 famil y lm2902 famil y lm2902 famil y lm2902 family lm2902 famil y lm2902 family lm2902 famil y fig. 85 fig. 86 fig. 87 fig. 88 fig. 89 fig. 90 fig. 91 fig. 92 fig. 93 fig. 94 fig. 95 fig. 96 [v] 36v
technical note 12/17 LM358DR/pwr/dgkr,lm2904 dr/pwr/dgkr/vqdr/vqpwr lm324dr/pwr/kdr,lm2902dr/pe r/kdr/kpwr/kvqdr/kvqpwr www.rohm.com 2011.06 - rev.b ? 2011 rohm co., ltd. all rights reserved. circuit diagram fig.97 circuit diagram (each op-amp) measurement circuit 1 null method measurement condition vcc,gnd,ek,vicr unit:[v] measurement item vf s1 s2 s3 lm358/lm324 family lm2904/lm2902 family calculation vcc gnd ek vicr vcc gnd ek vicr input offset voltage vf1 on on off 5 to 30 0 \ 1.4 0 5 to 30 0 \ 1.4 0 1 input offset current vf2 off off off 5 0 \ 1.4 0 5 0 \ 1.4 0 2 input bias current vf3 off on off 5 0 \ 1.4 0 5 0 \ 1.4 0 3 vf4 on off 5 0 \ 1.4 0 5 0 \ 1.4 0 large signal voltage gain vf5 on on on 15 0 \ 1.4 0 15 0 \ 1.4 0 4 vf6 15 0 -11.4 0 15 0 -11.4 0 common-mode rejection ratio vf7 on on off 5 0 \ 1.4 0 5 0 \ 1.4 0 5 vf8 5 0 \ 1.4 3.5 5 0 \ 1.4 3.5 supply voltage rejection ratio vf9 on on off 5 0 \ 1.4 0 5 0 \ 1.4 0 6 vf10 30 0 \ 1.4 0 30 0 \ 1.4 0 calculation 1.input offset voltage (vio) 2. input offset current (iio) 3.input bias current (iib) 4.large signal voltage gain (avd) 5.common-mode rejection ratio (cmrr) 6.supply voltage rejection ratio (ksvr) fig.98 measurement circuit 1 (each op-amp) vcc=25v in- out in+ gnd vcc 50[ ? ] 50[ ? ] 10[k ? ] 10[k ? ] 50[k ? ] 50[k ? ] 500[k ? ] 500[k ? ] vout r f ek s1 s2 s3 ri ri rs rs r f rl vicr dut vcc gnd vf 0.1[ f] 0.1[ f] 1000[pf] +15[v] -15[v] v [v] /rs r f 1+ vf1 vio ? / rs) r f (1+ ri vf1 vf2 - iio ? [a] rf / rs) (1+ ri 2 vf3 vf4 - ib ? [a] vf6 - vf5 /rs) r f (1+ log 20 ? 10 av [db] vf8-vf7 rs) rf / (1+ log cmrr ? 3.5 [db] 20 psrr = 20log vcc(1+rf/rs) vf10 - vf9 [db]
technical note 13/17 LM358DR/pwr/dgkr,lm2904 dr/pwr/dgkr/vqdr/vqpwr lm324dr/pwr/kdr,lm2902dr/pe r/kdr/kpwr/kvqdr/kvqpwr www.rohm.com 2011.06 - rev.b ? 2011 rohm co., ltd. all rights reserved. measurement circuit 2: switch condition sw no. sw 1 sw 2 sw 3 sw 4 sw 5 sw 6 sw 7 sw 8 sw 9 sw 10 sw 11 sw 12 sw 13 sw 14 sw 15 supply current off off off on off off on off off off off off off off off high level output voltage off off on off off off on off off on off off off on off low level output voltage off off on off off off on off off off off off off on off output source current off off on off off off on off off off off off off off on output sink current off off on off off off on off off off off off off off on slew rate off off off on off off off off on on on off off off off unity-gain bandwidth product off on off off off on on off off on on off off off off equivalent input noise voltage on off off off on off on off off off off on off off off measurement circuit 3: cross-talk attenuation fig.99 measurement circuit 2 (each op-amp) fig.100 slew rate input waveform fig.101 measurement circuit 3 vcc v sw1 sw2 sw3 sw11 sw12 sw13 a vin- vin+ rl gnd sw10 sw7 sw8 sw9 cl sw15 a v vout rs sw6 sw5 sw4 r1 r3 r2 sw14 sr v / t input voltage t input waveform 3[v] 0.5[v] t output waveform 3[v] 0.5[v] t ? ] r2=100[k ? ] r1//r2 vcc=+2.5[v] gnd=-2.5[v] othe r ch vout2 r1=1[k ? ] r2=100[k ? ] r1//r2 v
technical note 14/17 LM358DR/pwr/dgkr,lm2904 dr/pwr/dgkr/vqdr/vqpwr lm324dr/pwr/kdr,lm2902dr/pe r/kdr/kpwr/kvqdr/kvqpwr www.rohm.com 2011.06 - rev.b ? 2011 rohm co., ltd. all rights reserved. description of electrical characteristics described below are descriptions of the relevant electrical terms please note that item names, symbols and their meaning may differ form those on another manufacturer?s documents. 1. absolute maximum ratings the absolute maximum ratings are values that should never be exc eeded, since doing so may result in deterioration of characteri stics or damage to the part itself as well as peripheral components. 1.1 power supply voltage (vcc/gnd) expresses the maximum voltage that can be supplied between the posi tive and negative power supply terminals without causing det erioration of characteristics or destruction of the internal circuitry. 1.2 differential input voltage (vid) indicates the maximum voltage that can be supplied between the no n-inverting and inverting terminals without damaging the ic. 1.3 input common-mode voltage range (vicr) signifies the maximum voltage that can be supplied to the non-inve rting and inverting terminals without causing deterioration o f the electrical characteristics or damage to the ic itself. normal operation is not guaranteed within the input common-mode voltage range of the maximum rating s ? use within the input common-mode voltage range of the electric characteristics instead. 1.4 operating temperature range and storage temperature range (topr, tstg) the operating temperature range indicates the temperature range with in which the ic can operate. the higher the ambient tempera ture, the lower the power consumption of the ic. the storage temperature range denotes the ra nge of temperatures the ic can be stored under without causi ng excessive deterioration of the electrical characteristics. 1.5 power dissipation (pd) indicates the power that can be consumed by a sp ecific mounted board at ambient temperature (25 ). for packaged products, pd is determined by the maximum junction temperature and the thermal resistance. 2. electric characteristics 2.1 input offset voltage (vio) signifies the voltage difference between the non-inverting and inve rting terminals. it can be thought of as the input voltage d ifference required for setting the output voltage to 0v. 2.2 input offset voltage drift ( vio) denotes the ratio of the input offset voltage fluc tuation to the ambient temperature fluctuation. 2.3 input offset current (iio) indicates the difference of the input bias current between the non-inverting and inverting terminals. 2.4 input offset current drift ( iio) signifies the ratio of the input offset current fl uctuation to the ambient temperature fluctuation. 2.5 input bias current (iib) denotes the current that flows into or out of the input terminal , it is defined by the average of the input bias current at the non-inverting terminal and the input bias current at the inverting terminal. 2.6 circuit current (icc) indicates the current of the ic itself that flows un der specific conditions and during no-load steady state. 2.7 high level output voltage/low level output voltage (voh/vol) signifying the voltage range that can be output by under specific load conditions, it is in general divided into high level out put voltage and low level output voltage. high level output voltage indicates the upper limit of th e output voltage, while low level output voltage the lower li mit. 2.8 differential voltage amplification (avd) the amplifying rate (gain) of the output voltage against the voltage difference between non-inverting and inverting terminals, it is (normally) the amplifying rate (gain) with respect to dc voltage. avd = (output voltage fluctuation) / (input offset fluctuation) 2.9 input common-mode voltage range (vicr) indicates the input voltage range under which the ic operates normally. 2.10 common-mode rejection ratio (cmrr) signifies the ratio of fluctuation of the input offset volt age when the in-phase input voltage is changed (dc fluctuation). cmrr = (change in input common-mode voltage) / (input offset fluctuation) 2.11 power supply rejection ratio (ksvr) denotes the ratio of fluctuation of the input offset voltage when the supply voltage is changed (dc fluctuation). ksvr = (change in power supply voltage) / (input offset fluctuation) 2.12 output source current/ ou tput sink current (ioh/iol) the maximum current that can be output under specific output conditions, it is divided into output source current and output si nk current. the output source current indicates the current flowing out of ic, and the output sink current the current flowing into the ic. 2.13 cross talk attenuation (vo1/vo2) expresses the amount of fluctuation in the input offset voltage or output voltage with respect to the change in the output volt age of a driven channel. 2.14 slew rate at unity gain (sr) indicates the time fluctuation ratio of the out put voltage when an input step signal is supplied. 2.15 unity gain bandwidth (b1) the product of the specified signal frequency and the gain of the op-amp at such frequency, it gives the approximate value of t he frequency where the gain of the op-amp is 1 (maximum fr equency, unity gain frequency).
technical note 15/17 LM358DR/pwr/dgkr,lm2904 dr/pwr/dgkr/vqdr/vqpwr lm324dr/pwr/kdr,lm2902dr/pe r/kdr/kpwr/kvqdr/kvqpwr www.rohm.com 2011.06 - rev.b ? 2011 rohm co., ltd. all rights reserved. derating curves power dissipation power dissipation package pd[w] ja [ /w] package pd[w] ja [ /w] soic8 (*8) 450 3.6 soic14 610 4.9 tssop8 (*6) 500 4.0 tssop14 870 7.0 msop8/vssop8 (*7) 470 3.76 precautions 1) unused circuits when there are unused circuits, it is recommended that they be connected as in figure 103, setting the non-inverting input terminal to a pote ntial within the in-phase input voltage range (vicr). 2) input terminal voltage applying gnd + 32v to the input terminal is possible without causing deterioration of the electrical characteristics or destruction, irrespective of the supply voltage. however, this does not ensure normal circuit operation. please note that the circuit operates normally onl y when the input voltage is within the common mode input voltage range of the electric characteristics. 3) power supply (single / dual) the op-amp operates when the voltage is applied between vcc and gnd. therefore, the single supply op-amp can be used as a dual supply op-amp as well. 4) power dissipation (pd) using the unit in excess of the rated power dissipation may cause deterioration in electrical characteristics due to the rise o f chip temperature, including reduced current capability. therefore, please take into consider ation the power dissipation (pd) under the actual operating con ditions and apply a sufficient margin in thermal design. refer to the thermal derating curves for more information. 5) short-circuits between pins and erroneous mounting incorrect mounting may damage the ic. in addition, the presence of foreign substances between the outputs, the output and the p ower supply, or the output and gnd may also result in ic destruction. 6) operation in a strong electromagnetic field operation in a strong electromagneti c field may cause malfunctions. 7) radiation this ic is not designed to withstand radiation. 8) ic handing applying mechanical stress to the ic by def lecting or bending the board may cause fluctu ation of the electrical characteristics due to piezoelectric (piezo) effects. 9) ic operation the output stage of the ic is configured using class c push-pull circuits. therefore, when the load resistor is connected to th e middle potential of vcc and gnd, crossover distortion occurs at the changeover between discharging and charging of the output current. connecting a resisto r between the output terminal and gnd and increasing the bias current fo r class a operation will suppress crossover distortion. 10) board inspection connecting a capacitor to a pin with low im pedance may stress the ic. therefore, disc harging the capacitor after every process is recommended. in addition, when attaching and detaching the jig during the inspection phase, ensure that the power is turned off before inspection and rem oval. furthermore, please take measures against esd in the assembly proc ess as well as during transportation and storage. 11) output capacitor discharge of the external output capacitor to vcc is possible via internal parasitic elements when vcc is shorted to gnd, causi ng damage to the internal circuitry due to thermal stress. therefore, when using this ic in circuits where oscillation due to output capacitive load does not occur, such as in voltage comparators, use an output capacitor with a capacitance less than 0.1 f. 0 200 400 600 800 1000 0 25 50 75 100 125 150 ambient temperature [] power dissipation pd [mw] 0 200 400 600 800 0 25 50 75 100 125 150 ambient temperature [] power dissipation pd [mw] connect to v icm vcc gnd LM358DR/pwr/dgkr lm2904dr/pwr/dgkr/vqdr/vqpwr lm324dr/pwr/kdr lm2902dr/pwr/kdr/kpwr/kqdr/kqpwr fig.102 derating curves fig.103 disable circuit example ja = (tj-ta)/pd[ /w] 70 lm358dgkr LM358DR lm2904pwr lm2904vqpwr lm2904dgkr lm2904dr lm2904vqdr lm324pwr lm324dr lm324kdr lm2902pwr lm2902kpwr lm2902kqvpwr lm2902dr lm2902kdr lm2902kqvdr 70 lm358pwr
technical note 16/17 LM358DR/pwr/dgkr,lm2904 dr/pwr/dgkr/vqdr/vqpwr lm324dr/pwr/kdr,lm2902dr/pe r/kdr/kpwr/kvqdr/kvqpwr www.rohm.com 2011.06 - rev.b ? 2011 rohm co., ltd. all rights reserved. ordering part number l m 2 9 0 2 k v q d r family name lm358 lm324 lm2902 lm2904 esd tolerance application k : 2kv none : normal operating voltage vq : 32v none : 26v package type d : soic p w : tssop dgk : msop/vssop r : real (unit : mm) tssop8 0.08 s 0.08 m 4 4 234 8765 1 1.0 0.05 1pin mark 0.525 0.245 +0.05 ? 0.04 0.65 0.145 +0.05 ? 0.03 0.1 0.05 1.2max 3.0 0.1 4.4 0.1 6.4 0.2 0.5 0.15 1.0 0.2 (max 3.35 include burr) s ? order quantity needs to be multiple of the minimum quantity. embossed carrier tape tape quantity direction of feed 2500pcs the direction is the 1pin of product is at the upper left when you hold reel on the left hand and you pull out the tape on the right hand () direction of feed reel 1pin (unit : mm) (unit : mm) soic8 0.2 0.1 0.45min. 234 5 6 7 8 1 4.9 0.2 0.545 3.9 0.2 6.0 0.3 (max 5.25 include burr) 0.42 0.1 1.27 0.175 1.375 0.1 0.1 s s +6 ? 4 4 ? order quantity needs to be multiple of the minimum quantity. embossed carrier tape tape quantity direction of feed 2500pcs the direction is the 1pin of product is at the upper left when you hold reel on the left hand and you pull out the tape on the right hand () direction of feed reel 1pin (unit : mm) soic14 (unit : mm) 7 1 8 14 (max 9.0 include burr) +6 ? 4 1.05 0.2 1pin mark 3.9 0.1 0.42 ? 0.04 +0.05 0.22 +0.05 ? 0.03 0.515 1.65max 1.375 0.075 0.175 0.075 8.65 0.1 0.65 0.15 4 6.0 0.2 1.27 s 0.08 m 0.08 s ? order quantity needs to be multiple of the minimum quantity. embossed carrier tape tape quantity direction of feed 2500pcs the direction is the 1pin of product is at the upper left when you hold reel on the left hand and you pull out the tape on the right hand () direction of feed reel 1pin
technical note 17/17 LM358DR/pwr/dgkr,lm2904 dr/pwr/dgkr/vqdr/vqpwr lm324dr/pwr/kdr,lm2902dr/pe r/kdr/kpwr/kvqdr/kvqpwr www.rohm.com 2011.06 - rev.b ? 2011 rohm co., ltd. all rights reserved. (unit : mm) msop / vssop8 0.08 m 0.08 s s 4 4 (max 3.35 include burr) 5 7 8 1234 6 3.0 0.1 1pin mark 0.95 0.2 0.65 4.9 0.2 3.0 0.1 0.45 0.15 0.85 0.05 0.145 0.1 0.05 0.32 0.525 1.1max +0.05 ? 0.03 +0.05 ? 0.04 ? order quantity needs to be multiple of the minimum quantity. embossed carrier tape tape quantity direction of feed 2500pcs the direction is the 1pin of product is at the upper left when you hold reel on the left hand and you pull out the tape on the right hand () direction of feed reel 1pin (unit : mm) tssop14 0.08 s s 0.08 m 8 7 1 14 (max 5.35 include burr) 0.1 0.05 1pin mark 1.0 0.2 6.4 0.2 0.245 +0.05 ? 0.04 0.65 0.5 0.15 4.4 0.1 1.2max 0.145 +0.05 ? 0.03 4 4 1.0 0.05 0.55 5.0 0.1 ? order quantity needs to be multiple of the minimum quantity. embossed carrier tape tape quantity direction of feed 2500pcs the direction is the 1pin of product is at the upper left when you hold reel on the left hand and you pull out the tape on the right hand () direction of feed reel 1pin
r1120 a www.rohm.com ? 2011 rohm co., ltd. all rights reserved. notice rohm customer support system http://www.rohm.com/contact/ thank you for your accessing to rohm product informations. more detail product informations and catalogs are available, please contact us. notes no copying or reproduction of this document, in part or in whole, is permitted without the consent of rohm co.,ltd. the content specied herein is subject to change for improvement without notice. the content specied herein is for the purpose of introducing rohm's products (hereinafter "products"). if you wish to use any such product, please be sure to refer to the specications, which can be obtained from rohm upon request. examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the products. the peripheral conditions must be taken into account when designing circuits for mass production. great care was taken in ensuring the accuracy of the information specied in this document. however, should you incur any damage arising from any inaccuracy or misprint of such information, rohm shall bear no responsibility for such damage. the technical information specied herein is intended only to show the typical functions of and examples of application circuits for the produc ts. rohm does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by rohm and other parties. rohm shall bear no responsibility whatsoever for any dispute arising from the use of such technical information. the products specied in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, ofce-automation equipment, commu- nication devices, electronic appliances and amusement devices). the products specied in this document are not designed to be radiation tolerant. while rohm always makes efforts to enhance the quality and reliability of its products, a product may fail or malfunction for a variety of reasons. please be sure to implement in your equipment using the products safety measures to guard against the possibility of physical injury, re or any other damage caused in the event of the failure of any product, such as derating, redundancy, re control and fail-safe designs. rohm shall bear no responsibility whatsoever for your use of any product outside of the prescribed scope or not in accordance with the instruction manual. the products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel- controller or other safety device). rohm shall bear no responsibility in any way for use of any of the products for the above special purposes. if a product is intended to be used for any such special purpose, please contact a rohm sales representative before purchasing. if you intend to export or ship overseas any product or technology specied herein that may be controlled under the foreign exchange and the foreign trade law, you will be required to obtain a license or permit under the law.


▲Up To Search▲   

 
Price & Availability of LM358DR

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X